Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 89(Suppl 1): S205-S223, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38621751

RESUMO

The term "biomolecular condensates" is used to describe membraneless compartments in eukaryotic cells, accumulating proteins and nucleic acids. Biomolecular condensates are formed as a result of liquid-liquid phase separation (LLPS). Often, they demonstrate properties of liquid-like droplets or gel-like aggregates; however, some of them may appear to have a more complex structure and high-order organization. Membraneless microcompartments are involved in diverse processes both in cytoplasm and in nucleus, among them ribosome biogenesis, regulation of gene expression, cell signaling, and stress response. Condensates properties and structure could be highly dynamic and are affected by various internal and external factors, e.g., concentration and interactions of components, solution temperature, pH, osmolarity, etc. In this review, we discuss variety of biomolecular condensates and their functions in live cells, describe their structure variants, highlight domain and primary sequence organization of the constituent proteins and nucleic acids. Finally, we describe current advances in methods that characterize structure, properties, morphology, and dynamics of biomolecular condensates in vitro and in vivo.


Assuntos
Fenômenos Bioquímicos , Ácidos Nucleicos , Condensados Biomoleculares , Proteínas , Citoplasma
2.
Life (Basel) ; 10(9)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825636

RESUMO

Amyloids are highly ordered fibrous cross-ß protein aggregates that are notorious primarily because of association with a variety of incurable human and animal diseases (termed amyloidoses), including Alzheimer's disease (AD), Parkinson's disease (PD), type 2 diabetes (T2D), and prion diseases. Some amyloid-associated diseases, in particular T2D and AD, are widespread and affect hundreds of millions of people all over the world. However, recently it has become evident that many amyloids, termed "functional amyloids," are involved in various activities that are beneficial to organisms. Functional amyloids were discovered in diverse taxa, ranging from bacteria to mammals. These amyloids are involved in vital biological functions such as long-term memory, storage of peptide hormones and scaffolding melanin polymerization in animals, substrate attachment, and biofilm formation in bacteria and fungi, etc. Thus, amyloids undoubtedly are playing important roles in biological and pathological processes. This review is focused on functional amyloids in mammals and summarizes approaches used for identifying new potentially amyloidogenic proteins and domains.

3.
Adv Genet ; 105: 293-380, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32560789

RESUMO

Amyloids are fibrous cross-ß protein aggregates that are capable of proliferation via nucleated polymerization. Amyloid conformation likely represents an ancient protein fold and is linked to various biological or pathological manifestations. Self-perpetuating amyloid-based protein conformers provide a molecular basis for transmissible (infectious or heritable) protein isoforms, termed prions. Amyloids and prions, as well as other types of misfolded aggregated proteins are associated with a variety of devastating mammalian and human diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, transmissible spongiform encephalopathies (TSEs), amyotrophic lateral sclerosis (ALS) and transthyretinopathies. In yeast and fungi, amyloid-based prions control phenotypically detectable heritable traits. Simplicity of cultivation requirements and availability of powerful genetic approaches makes yeast Saccharomyces cerevisiae an excellent model system for studying molecular and cellular mechanisms governing amyloid formation and propagation. Genetic techniques allowing for the expression of mammalian or human amyloidogenic and prionogenic proteins in yeast enable researchers to capitalize on yeast advantages for characterization of the properties of disease-related proteins. Chimeric constructs employing mammalian and human aggregation-prone proteins or domains, fused to fluorophores or to endogenous yeast proteins allow for cytological or phenotypic detection of disease-related protein aggregation in yeast cells. Yeast systems are amenable to high-throughput screening for antagonists of amyloid formation, propagation and/or toxicity. This review summarizes up to date achievements of yeast assays in application to studying mammalian and human disease-related aggregating proteins, and discusses both limitations and further perspectives of yeast-based strategies.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Amiloidose/metabolismo , Doenças Priônicas/metabolismo , Príons/metabolismo , Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Amiloidose/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doenças Priônicas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas tau/genética
4.
J Biol Chem ; 294(16): 6506-6521, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30808709

RESUMO

Ether-a-go-go family (EAG) channels play a major role in many physiological processes in humans, including cardiac repolarization and cell proliferation. Cryo-EM structures of two of them, KV10.1 and human ether-a-go-go-related gene (hERG or KV11.1), have revealed an original nondomain-swapped structure, suggesting that the mechanism of voltage-dependent gating of these two channels is quite different from the classical mechanical-lever model. Molecular aspects of hERG voltage-gating have been extensively studied, indicating that the S4-S5 linker (S4-S5L) acts as a ligand binding to the S6 gate (S6 C-terminal part, S6T) and stabilizes it in a closed state. Moreover, the N-terminal extremity of the channel, called N-Cap, has been suggested to interact with S4-S5L to modulate channel voltage-dependent gating, as N-Cap deletion drastically accelerates hERG channel deactivation. In this study, using COS-7 cells, site-directed mutagenesis, electrophysiological measurements, and immunofluorescence confocal microscopy, we addressed whether these two major mechanisms of voltage-dependent gating are conserved in KV10.2 channels. Using cysteine bridges and S4-S5L-mimicking peptides, we show that the ligand/receptor model is conserved in KV10.2, suggesting that this model is a hallmark of EAG channels. Truncation of the N-Cap domain, Per-Arnt-Sim (PAS) domain, or both in KV10.2 abolished the current and altered channel trafficking to the membrane, unlike for the hERG channel in which N-Cap and PAS domain truncations mainly affected channel deactivation. Our results suggest that EAG channels function via a conserved ligand/receptor model of voltage gating, but that the N-Cap and PAS domains have different roles in these channels.


Assuntos
Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go , Ativação do Canal Iônico , Modelos Moleculares , Animais , Células COS , Chlorocebus aethiops , Canal de Potássio ERG1/química , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Peptídeos/química , Domínios Proteicos
5.
Prion ; 10(4): 269-82, 2016 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-27565563

RESUMO

Transmissible self-assembled fibrous cross-ß polymer infectious proteins (prions) cause neurodegenerative diseases in mammals and control non-Mendelian heritable traits in yeast. Cross-species prion transmission is frequently impaired, due to sequence differences in prion-forming proteins. Recent studies of prion species barrier on the model of closely related yeast species show that colocalization of divergent proteins is not sufficient for the cross-species prion transmission, and that an identity of specific amino acid sequences and a type of prion conformational variant (strain) play a major role in the control of transmission specificity. In contrast, chemical compounds primarily influence transmission specificity via favoring certain strain conformations, while the species origin of the host cell has only a relatively minor input. Strain alterations may occur during cross-species prion conversion in some combinations. The model is discussed which suggests that different recipient proteins can acquire different spectra of prion strain conformations, which could be either compatible or incompatible with a particular donor strain.


Assuntos
Amiloide/metabolismo , Modelos Biológicos , Príons/química , Príons/metabolismo , Saccharomyces/classificação , Saccharomyces/metabolismo , Conformação Proteica , Saccharomyces/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA